Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bruno Therrien* and Georg Süss-Fink

Institut de Chimie, Université de Neuchâtel, Case Postale 158, CH-2009 Neuchâtel, Switzerland

Correspondence e-mail: bruno.therrien@unine.ch

Key indicators

Single-crystal X-ray study T = 203 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.043 wR factor = 0.122Data-to-parameter ratio = 10.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_6H_7CH_2COOH$, is formed by a standard Birch reduction of phenylacetic acid. As expected, a centrosymmetric head-to-tail dimer is observed in the solid state, formed through $O-H \cdots O$ hydrogen bonds.

Dinuclear arene–ruthenium complexes are synthesized by dehydrogenation of the appropriate cyclohexadiene with RuCl₃ hydrate (Bennett & Smith, 1974). The title compound, (I), has been used by Sheldrick and co-workers to synthesize

the corresponding dinuclear arene ruthenium complex $[(\eta^6 -$

 $C_6H_5CH_2COOH)Ru(\mu_2-Cl)Cl]_2$ (Stodt *et al.*, 2003). However,

2-(Cyclohexa-1,4-dienyl)acetic acid

Received 4 April 2006 Accepted 11 April 2006

it has not been characterized by X-ray crystal structure analysis before now.

The single-crystal X-ray structure analysis of (I) reveals a planar conformation of the 1,4-cyclohexadiene ring, with C=C double bonds of 1.333 (2) and 1.321 (3) Å. These values, as well as the other bond distances and angles, are similar to those found in other 1,4-cyclohexadiene derivatives, namely *N*-acetyl-D-2-(1,4-cyclohexadienyl)glycine ethyl ester (Dialer *et al.*, 2004) and 1,4-cyclohexadiene-1-glycine (Jandacek & Simonsen, 1969).

As expected, the acid function forms a centrosymmetric hydrogen-bonded dimer with a neighbouring molecule

© 2006 International Union of Crystallography All rights reserved Figure 1

Comment

organic papers

(Table 1, Fig. 2). A similar centrosymmetric hydrogen-bonded pair was observed in the single-crystal structure of phenylacetic acid (Hodgson & Asplund, 1991).

Experimental

The title compound was prepared by standard Birch reduction of phenylacetic acid (Kuehne & Lambert, 1973). Colourless crystals of (I) suitable for single-crystal X-ray analysis were obtained by slow evaporation of a diethyl ether solution at 263 K.

Z = 4

 $D_x = 1.303 \text{ Mg m}^{-3}$

 $0.38 \times 0.28 \times 0.22$ mm

1336 independent reflections

957 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

T = 203 (2) K Block, colourless

 $R_{\rm int}=0.077$

 $\theta_{\rm max} = 26.1^{\circ}$

Crystal data

$C_8H_{10}O_2$	
$M_r = 138.16$	
Monoclinic, $P2_1/a$	
a = 10.7111 (12) Å	
b = 4.4150 (6) Å	
c = 14.9541 (18) Å	
$\beta = 95.053 \ (14)^{\circ}$	
$V = 704.42 (15) \text{ Å}^3$	

Data collection

Stoe IPDS diffractometer φ scans Absorption correction: none 5163 measured reflections

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.079P)^2]$
$wR(F^2) = 0.122$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.98	$(\Delta/\sigma)_{\rm max} < 0.001$
1336 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
131 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^i$	0.93 (4)	1.72 (4)	2.6436 (18)	172 (3)

Symmetry code: (i) -x + 1, -y, -z + 1.

Figure 2 The hydrogen bonding (dashed lines) between pairs of molecules of (I).

The range of refined C-H distances is 0.96 (2)-1.01 (2) Å.

Data collection: *EXPOSE* in *IPDS Software* (Stoe & Cie, 2000); cell refinement: *CELL* in *IPDS Software*; data reduction: *INTE-GRATE* in *IPDS Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-32* (Farrugia, 1997) and *MERCURY* (Bruno *et al.*, 2002); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Swiss National Science Foundation (grant No. 20–61227-00).

References

Bennett, M. A. & Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233-241.

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.

Dialer, H., Nöth, H., Seifert, T. & Beck, W. (2004). Z. Kristallogr. New Cryst. Struct. 219, 309–310.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986-1987.

Jandacek, R. J. & Simonsen, S. H. (1969). J. Am. Chem. Soc. 91, 6663-6665.

- Kuehne, M. E. & Lambert, B. F. (1973). Org. Synth. 5, 400-403.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stodt, R., Gencaslan, S., Müller, I. M. & Sheldrick, W. S. (2003). Eur. J. Inorg. Chem. pp. 1873–1882.

Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.